发表自话题:有什么借款软件通过率比较高
前不久Iphone X发布,革命性的取消了TouchID(指纹识别),而添加了更酷的 FaceID(人脸识别) 模块,FaceID 不简单的运用在解锁上,还可以在支付,表情等场景中应用,给开发者带来更酷更丰富的应用,Iphone X 在多个硬件传感器的加持下,可以采集3万个点来感知用户的面部特征。
我们知道人脸识别在这几年应用相当广泛,人脸考勤,人脸社交,人脸支付,哪里都有这黑科技的影响,特别这几年机器学习流行,使得人脸识别在应用和准确率更是达到了一个较高的水准。
下面将带着大家揭秘下这项黑科技的原理。
人脸识别是由一系列的几个相关问题组成的:
首先找到一张图片中的所有人脸。 对于每一张脸来说,无论光线明暗或面朝别处,它依旧能够识别出是同一个人的脸。 能够在每一张脸上找出可用于他人区分的独特之处,比如眼睛多大,脸有多长等等。 最后将这张脸的特点与已知所有人脸进行比较,以确定这个人是谁。第一步:找出所有的面孔
很显然在我们在人脸识别的流程中得首先找到图片中的人脸。我们在使用手机或相机拍照时都会有人像模式,它能轻松的检测出人脸的位置,帮助相机快速对焦。
我们得感谢 保罗·比奥拉(Paul Viola)和迈克尔·琼斯(Michael Jones)在2000年发明了一种能够快速在廉价相机上运行的人脸检测方法,人脸检测在相机上的应用才成为主流。然而现在我们有更可靠的解决方案HOG(Histogram of Oriented Gradients)方向梯度直方图,一种能够检测物体轮廓的算法。
首先我们把图片灰度化,因为颜色信息对于人脸检测而言没什么用。
我们分析每个像素以及其周围的像素,根据明暗度画一个箭头,箭头的指向代表了像素逐渐变暗的方向,如果我们重复操作每一个像素,最终像素会被箭头取代。这些箭头被称为梯度(gradients),它们能显示出图像从明亮到黑暗流动的过程。
分析每个像素对我们来说有点不划算,因为它太过细节化了,我们可能会迷失在像素的海洋里,我们应该从更高的角度观察明暗的流动。
为此我们将图像分割成16x16像素的小方块。在每个小方块中,计算出每个主方向有多少个剃度(有多少指向上,指向右上,指向右等)。然后用指向性最强的那个方向箭头来代替原来那个小方块。
最终结果,我们把原始图像转换成一个非常简单的HOG表达形式,它可以很轻松的捕获面部的基本结构。
为了在HOG图像中找到脸部,我们需要做的是,与已知的一些HOG图案中,看起来最相似的部分。这些HOG图案都是重其他面部训练数据中提取出来的。
第二步:脸部的不同姿势
我们已经找出了图片中的人脸,那么如何鉴别面朝不同方向的人脸呢?
对于电脑来说朝向不同的人脸是不同的东西,为此我们得适当的调整扭曲图片中的人脸,使得眼睛和嘴总是与被检测者重叠。
为了达到目的我们将使用一种面部特征点估计(face landmark estimation)的算法。其实还有很多算法都可以做到,但我们这次使用的是由瓦希德·卡奇米(Vahid Kazemi)和约瑟菲娜·沙利文(Josephine Sullivan)在 2014 年发明的方法。
这一算法的基本思路是找到68个人脸上普遍存在的点(称为特征点, landmark)。
【房产】学区房,全江景,智能化人脸识别,周边配套设施齐全!_房源
2021-01-30
独家丨人脸识别+智慧生活服务平台“脸家”,获千万元级天使轮融资_社区
2020-08-26
2020-08-12
2020-07-27
2020-07-27
只要逾期了就会上征信,那么逾期一天和逾期三个月有什么区别?_借款
2020-07-27
2020-07-27
上征信,不上征信的贷款差别,他们的背景有什么区别?资金来自哪
2020-07-27
2020-07-27
2020-07-27